Scalegenesis and fermionic dark matters in the flatland scenario
Scalegenesis and fermionic dark matters in the flatland scenario
Blog Article
Abstract We propose an extension of the standard model with Majorana-type fermionic dark matters based on the flatland scenario where all scalar coupling constants, including scalar Faber High-Light RAD BRS WH MATT A91 Matt White 91cm 110.0456.206 cooker hood mass terms, vanish at the Planck scale, i.e.the scalar potential is flat above the Planck scale.This scenario could be compatible with the asymptotic safety paradigm for quantum gravity.We search the parameter space so that the model reproduces the observed values such as the Higgs mass, the electroweak vacuum and the relic abundance of dark matter.
We also investigate the spin-independent elastic cross section for the Majorana fermions and a nucleon.It is shown that the Majorana fermions as dark matter candidates could be tested by dark matter direct detection experiments such as XENON, LUX and PandaX-II.We demonstrate that within the minimal setup compatible with the flatland scenario at Pad the Planck scale or asymptotically safe quantum gravity, the extended model could have a strong predictability.